

Review and Update of Surface Water Availability Modeling

John Boyer

Agenda Item 4

Surface Water Scenarios

Base Scenarios

- Current Surface Water Use Scenario
 - Uses most recent 10-yr average withdrawals (as reported by month) in most cases
- Permitted and Registered (P&R) Surface Water Use Scenario
 - Uses current fully-permitted and registered amounts
- Moderate Water Demand Projection Scenario
 - Future water demand projection based on moderate growth and normal climate
- High Water Demand Projection Scenario
 - Future water demand projection based on high growth and hot/dry climate

Additional Scenarios

- Unimpaired Flow (UIF) Scenario
 - Naturalized conditions (no surface water withdrawals, discharges, or reservoirs)

Summary of Average Annual Surface Water Demands by Scenario (in MGD)

Surface Water Use Sector	Current Use	Permitted and Registered (P&R)	Current Use as a Percent of P&R
Mining	0.1	0.5	14%
Agriculture	2.7	15.2	18%
Golf Courses	0.6	10.1	6 %
Industrial/Manufacturing	24.9	44.9	55%
Public Water Supply	142.6	525.1	27%
Thermoelectric ¹	171.2	502.0	34%
Total all Sectors*	342	1,098	31%
Total without Thermoelectric*	171	596	29 %

Updates to Current Use and P&R Scenarios

Lake Rabon

- Added dead pool storage
- Add minimum release of 9 cfs

Table Rock and North Saluda Reservoirs

- Add minimum release of **3 MGD** (**4.65 cfs**) to both reservoirs
- Adjusted operating rules to better balance the withdrawals

Surface Water Shortage Table

Map ID	Water User	Max Shortage (MGD)	Frequency of Shortage
1	IR: Overbridge Farm	0.03	0.2%
2	IR: Leslea Farms	0.02	0.1%
3	IR: Watson Jerrold Farm	0.9	14%
4	IR: Titan Farms	1.5	9 %

IR: Leslea Farms Impoundments totaling 9 acres

Surface water user with storage not included in the model

Permitted & Registered Scenario

Surface Water Shortage Table

Map ID	Water User	Max Shortage (MGD)	Frequency of Shortage
1	IR: Overbridge Farm	0.3	5%
2	IR: Leslea Farms	0.5	9 %
3	IR: Watson Jerrold	5.9	76%
4	IR: Titan Farms	3.0	40%
5	PT: Duke Lee Station	295	38%
6	WS: Greenville	90	94%
7	GC: Smithfields	1.4	6%
8	WS: Laurens CPW	66	69 %
9	GC: The Preserve	1.3	8%
10	GC: Furman	1.3	6 %
11	IR: Satterwhite Farm	0.1	0.1%
12	GC: Ponderosa	0.6	0.2%
13	IR: Sease James	0.9	0.9%
14	GC: Lexington	0.03	0.1%
15	IR: Sease Clinton	0.7	0.9%

Summary of Water Supply Shortages

Supply Shortage Metric	Current Use	Permitted & Registered
Total basin annual mean shortage (MGD)	0.09	99.5
Maximum water user shortage (MGD)	1.5	295.1
Total basin annual mean shortage as a percentage of total water demand	0.03%	7.8 %
Percentage of surface water users experiencing a shortage	13.5%	43.2%
Average frequency of shortage (%)	0.6%	9.8%

Reservoir Storage – Table Rock Lake

Reservoir Storage – North Saluda Reservoir

Comparison to Minimum Instream Flows

1988 Instream Flow Study

- In 1983 the Water Resource Commission was directed to
 - Phase 1: Identify streams in need of low flow protection (1985)
 - Phase II: Make recommendations of MIF requirements to protect instream uses (1988)
- Determined MIF for 33 study sites based on 6 instream uses with different instream flow approaches
- MIF to protect fisheries resources determined by
 - Tennant Method
 - Wetted Perimeter
 - Usable Width
- Instream flows should be determined for 3 periods to maintain natural seasonal variability (higher flows in spring, lower in summer).
- SC Wildlife and Marine Resources Dept. used study to develop MIF for fisheries as 20-30-40

ed to	INSTREAM FLOW STUDY
	PHASE II:
	Determination of Minumum Flow Standards to Protect Instream Uses in Priority Stream Segments
m	A Report to the South Carolina General Assembly
	Report Number 163
	South Carolina Water Resources Commission 1201 Main Street, Suite 1100 Columbia, South Carolina
0	May 1988
)	

2009 SCDNR Instream Flow Policy

- Adopted results of 1988 study
 - Seasonal variability in flows
 - Fisheries requirements as limiting
- Based on variation in fish habitat needs in the Piedmont vs the Coastal Plain, DNR recommended MIFs vary
- DNR will request MIFs below proposed or existing dams be maintained at minimum levels noted in the table

Region	Period	Minimum Recommended Instream-Flow
	July – November	20% of mean annual daily flow
Coastal Plain	January – April	60% of mean annual daily flow
	May, June & December	40%' of mean annual daily flow
	July – November	20% of mean annual daily flov
Piedmont	January – April	40% of mean annual daily flov
	May, June & December	30% of mean annual daily flow

INSTREAM FLOWS TO PROTECT AQUATIC RESOURCES IN SOUTH CAROLINA

Minimum	Instream-Flow	Policy
	inou ouni i ion	,

Determination of General Instream-Flow Recommendations

March 2009

This document is available on the Department of Natural Resources web site at http://www.dnr.sc.gov/

Minimum Instream Flows in the SW Regulations

The South Carolina Surface Water Withdrawal, Permitting, Use, and Reporting Act defines the Minimum Instream Flow as:

"... the flow that provides an adequate supply of water at the surface water withdrawal point to maintain the biological, chemical, and physical integrity of the stream taking into account the needs of downstream users, recreation, and navigation and that flow is set at forty percent of the mean annual daily flow for the months of January, February, March, and April; thirty percent of the mean annual daily flow for the months of May, June, and December; and twenty percent of the mean annual daily flow for the months of July through November for surface water withdrawers as described in Section 49 4 150(A)(1).

For surface water withdrawal points located on a surface water segment downstream of and influenced by a licensed or otherwise flow controlled impoundment, "minimum instream flow" means the flow that provides an adequate supply of water at the surface water withdrawal point to maintain the biological, chemical, and physical integrity of the stream taking into account the needs of downstream users, recreation, and navigation and that flow is set in Section 49 4 150(A)(3)." (which says that MIF shall be the flow specified in the license by the appropriate governmental agency)

Summary of Interbasin Transfers

Saluda River Basin – Interbasin Transfers

Current Use Scenario Imports and Exports

Next Steps

- Incorporate **Moderate** and **High Demand Projections** and present these Scenario Results at the November RBC Meeting.
- Apply **flow-ecology metrics** then evaluate them using SWAM model daily timestep results for each planning scenario (RBC, CDM Smith, TNC, Clemson)
- Other actions, as identified by RBC